it fice

RADC-TR-90-185
In-House Report
July 1990

DISTRIBUTED SYSTEM EVALUATION

Vaughn T. Combs, Patrick M. Hurley, Charles B. Schulitz, Anthony M. Newton

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIC

£ EL.ECTE
égz}:a SEP14 1930

ni S

Rome Air Development Center
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

90 09 13 090

This report has been reviewed by the RADC Public Affairs Office (PA) and is
releasable io the National Technical Information Service (NTIS). At NTIS it will be
releasable to the general public, including foreign nations.

RADC TR-90-185 has been reviewed and is approved for publication.
APPROVED

RONALI} S. RAPOSO
Chief, C™ Systems Technology Division
Directorate of Command and Control

{%Wz Al

RAYMOND P. URTZ, IR.
Technical Director
Directorate of Command and Control

APPROVED:

FOR THE COMMANDER:

aﬁwm

IGOR J. PLONISCH
Directorate of Plans and Programs

If your address has changed or if you wish to be removed from the RADC mailing list,
or if the addressee is no longer employed by your organization, please notify RADC
(COTD) Griffiss AFB NY 13441-5700, This will assist us in maintaining a current
mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document requires that it be returned.

REPORT DOCUMENTATION PAGE OFw Ner 6704.0188

Pmcvmwhm L o B Sverage | hows Der reeponss. INCALNg the dme e ‘o-.udnmmomn
maraneg he one - g e ounm-:n Send commens NG TN DLITEN SLEMAM O &7YY OTWN ALDECT Of P38 CDBECIAN Of MTOIMASN. NAALING LIPS SONE
for reducg Tes Suroen, nwmmm Osecuwam bor tormason nwnﬂw‘nu.nhmbauw&a.\mmw\uzmzmz & ©
e Otoe of Niormason ancs ReuAsory Altars, Ofce of Maragemsnt and ButDet. Wasrngon, OC 20603.
1. AGENCY USE ONLY (Leave B} 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 1990 In-House Jul 88 - Feb 90
4. TITLE AND SUBTITLE 5. FUNOING NUMBERS
DISTRIBUTED SYSTEM EVALUATION PE - 62702F
PR - 5581
TA - 28
6. AUTHOR(S) wU - 17

Vaughn T. Combs, Patrick M. Hurley, Charles B. Schultz,
Anthony M. Newton

*. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION
Rome Air Development Center (COTD) RADC-TR-90-185

Griffiss AFB NY 13441-5700

0. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORINGMONITORING AGENCY
. REPORT NUMBER
Rome Air Developmen: Center (COTD) N/A

Griffiss AFB NY 13441-5700

11. SUPPLEMENTARY NOTES

RADC Project Engineer: Vaughn T. Combs/COTD/(315) 330-3623

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12 DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ARSTRATT (acaxsmun: 200 woras)

3 This paper describes an RADC in-house distributed systems evaluation project. As a part of the
project, a iist of attributes were first identified that are necessary and/or desirable in a
distributed system. A set of metrics were then designed that would suitably measure
distributed system performance for a subset of the attributes identified. The metrics were then
implemented using the Cronus Distributed Computing Environment. The results obtained for
this implementation are presented. L~ '

1
- Moo, €~ 1 [Lo ’f
et . - i ' . /’)
]

I
L . - R

S, B R ,;‘.’\,

)

14 SUBJECT TERMS 15 NUMBER OF PAGES
Distributed System Evaluation 68
Distributed Systems £ . 16. PRICE CODE

I8 ! : P
ibuted (ginpratmg ystems - ~ 0 /
17 SECURITY CLASSIFICATION = | '8 SECURITY CLASSIFICATION Y9 SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT 20 LIMITATION OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01.280-5500 Stancaro rorm 29s 880622

Presawed by ANSI ST 2% V4
290

Table of Contents

L0 INTRODUCT ION e e e e e et 1
2.0 Distribuled SYSICM AWIIDULCS .oee i e ee et ee e e 3
2.0.1 Concurrent PrOCCSSING ..ot e e 3
2.0.2 Greater Availability and Survivabtlily L. 3
205 IPC Efficiency and NCIWOrK TTANSPUATCIICY oottt 3
2.0.4 Global Resource MAanagemienl oo e e e e 4
3.0 Distributed Operating System Evalualion ..o e 5
3.1 The Hardwarc and Software EnVITONMCRLS t..viiiiiii e ee e eean 5
3.1.1 The Distributed Environments S UV OPOURUORIRNY 5
3.2 Benchmarking Computational Throughpui ...t e 9
3.2.1 The Proposed ModCl ..o e et ans 9
3.2.2 Implementation Detailsoimniiiiiiiii e 11
3.2.3 Discussion Of RESUILS ...eiuniiiiiiiiiiiiii e et er e e et e e e e e aaan 12
3.3 Benchmarking Availability and Survivabilly ..., 30
3.3.1 The Proposed Model ... ettt e an
3.3.2 Choice Of DAta «oooviiiiiiiii it e an et e e e e e raa 31
3.3.3 Replication in CTOMUS ...ouviiui ittt e e e ee e mr e s eeeeae e 31
3.3.4 Benchmarking Cronus Rephication ...t 34
3.3.5 Discussion of RCSUILS .oooeee it i e e ee et e e er s 37
3.4 Benchmarking Interprocess COMMUNICALION ..o.o.iiiiiiitiiiieiiie e eeeeeaeeraeraeseeaeaeenaenaees 40
3.4.1 Results from Benchmarking Interprocess Communicationoovvceieinieiiiannnee. 42
4.0 Overali Remarks and ConclusiOnSoiiiiiir it e e rene e e et ce b eerenerann s 51
Appendix A. Example Type and Manager Definition Files ...ooooviiiiiiiii e 55
Appendix B. Pscudocode of Benchmarking Procedures (Concurrent Processing)ooeveeeevennnnnen. 56
- .'! . 7]
.o]
=
N 0 o tem]
Cevovdsm\
‘ bpe
LT
?__ [- [—
iope o ity Codes |
S . e
j : uijor
. 1 e . I 0
i . L ‘ Wt x,. i
: !
A1l

Section 1

1.0 Introduction: The growing interest in distributed computing systems can be attributed to
the number of benefits offered by these systems. Among these are increased performance,
higher availability of - .nurces, and improved fault tolerance and survivability characteristics.
These attributes are associated with the distributed environment’s ability to use and manage
the increasing number of resources provided by its cooperating nodes.

A number of systems have been proposed to support functionality required in distributed
operating systems [1,4,56,21,23], distributed database and file systems [7,8,9,10,11],
distributed management and control [12,13], and distributed aruficial intelligence [14,15].
However, with the emergence of diverse heterogencous computer systems and due to the
significant changes which are taking place In communication technology and protocols, it is
becoming rather ditficult to analyze a distributed environment and to assess its capability for
efticiently supporting various applications.

In response to this apparent inadequacy an RADC/COTD in-house working group has
been working on a project to identify and characterize the attributes necessary and desireable,
in a distributed operating system (DOS). Next a set of metrics were designed and
implemented that would suitably measure distributed system performance for a subset of the
attributes identified. The mewrics were implemented using the Cronus distributed computing
environment which was developed for the Department of Defense by Bolt Beranek and
Newman (BBN) Laboratories Incorporated. Cronus is currently being used for several in-
house research projects as well as in many governmental agencies.

A distributed computing system can be broadly defined as a collection of computers
connected by a network that cooperate to complete some computation. This definition,
however, describes every class of distributed system imaginable from a distributed database
system to a more complex heterogeneous distributed operating system that might necessarily
handle complex scheduling and other global resource management tasks. A distributed
operating system (DOS), in general, takes on the more classical role of an operating system
but does so utilizing a collection of, possible geographically dispersed, set of resources. In
other words the DOS creates and manages logical resources (e.g. application/user processes
and files) and physical resources (e.g. processors, memories). There are, however, many
classes of distributed operating systems. For example a distributed system may be
homogeneous (designed to run on a common hardware base) or heterogeneous (designed to
utilize a collection of machines of differing architectures). In a heterogeneous environment the
DOS must deal with the potentially burdensome job of translating data to and from some
canonical representation when it is passed between machines. A DOS may be a real time or a
non-real time DOS. A real time DOS in some way accepts temporal constraints and
relationships from a user (application) and makes resource management decisions (e.g. process
scheduling) in an attempt to meet these real time constraints. The distributed system may also
be classified by the level at which the system is implemented. For example, there is a class
of distributed systems that are built on top of an existing local or constituent operating system
(e.g. Unix, VMS, etc.). This class of distributed systems are usually referred to as distributed
computing environments. While the distributed computing environment provides or at least
facilitates distribution of computation, global naming, location transparency, etc., as In a

-

distributed operating system, resource management, however, 1s usually handled locally by the
underlying constituent operating system (l.e. no global resource management strategies are
usually considered). The distributed computing environment considered in this report (Cronus)
is such a distributed system. In contrast, there is a class of distributed systems that are built
assuming that all operating system functions (subsystems) are implemented by the DOS code
itself (i.e. it is a local operating system kernel replacement).

The following report will be organized as follows. In section 2 a brief outline is given of
distributed operating system attributes deemed most important by our working group based on
performance and funciion. A complete description of ihe metrics used to characterize
performance with respect to some of the important attributes described is included in section
3. Finally, section 4 contains our concluding remarks.

Section 2

2.0 Distributed System Attributes: In order to effectively quantify the performance of a
distributed operating system it is important to identify and understand the system components
or attributes that provide desired functionality or utility. A distributed operating system
provides a higher degree of functionality not found in most centralized systems. A brief
description of this increased functions is provided in the following sub-sections.

2.0.1 Concurrent Processing: In general we would expect that there would be a definite
benetit in applying a greater number of computers to a problem. Simply stated, we expect the
computational power of one computer to be somewhat less than a collection of computers. If
a distributed operating system is designed with aschrony in mind efficient usage of overall
system resources can be employed through the use of increased parallelism. However it is not
inconceiveable that through poor system design (i.e. centralized control approach, inefficient
implementation of inter-process communication, etc.) that system performance can actually be
degraded in comparison to a single centralized system. In general it will be advantageous to
operate in a distributed environment if the added computational power of a node is not
overcome by the overhead necessary for the computers to cooperate in the distributed
environment. This assessment assumes that our only consideration is for added computational
capability and disimisses other attributes for which an apphication developer may be willing to
pay a great deal (i.e. data and process survivability, data availability, etc.). So it is necessary
to develop a set of metrics that will give us some insight into how well a particular distributed
environment provides us with a means of making use of a collection of resources. One such
metric will be discussed in detail later in this report.

2.0.2 Greater Availability and Survivability: Another quality or attribute of a distributed
operating system is its ability to make processes and data available in the presence of system
(and softwarc) faults and failures. While centralized systems continue to evolve so do their
reliability. There is still, however, a non-zero probability of a failure occuring. In a
distributed system it is possible to protect data and processes through the judicious use of
replication. Many distributed systems provide varying levels of support mechanisms for
implementing a number of different replication schemes. It is important to design a set of
metrics that will measure how available processes and data are in the presence of faults and
failures. It is also very important to quantify the cost of mechanisms provided by the system
to support replication (i.e. mechanisms designed to maintain consistency among replicated
copies of data, mechanisms to support replicated processes, etc.). One such performance
metric is read and write access latency times for replicated copies of data. This metric will be
described in detail later in this report.

2.0.3 IPC Efficiency and Network Transparency: Another attribute that distinguishes
distributed operating systems from the earlier network operating systems is the primitves
designed to hide the implementation of the lower level network from the application designer.
This may allow the designer to deal with relatively simple commands (Send, Receive, Invoke,
etc.) for communication between entities and manipulation of data without requiring

knowlcdge of where processess and data reside. An efficient distributed operating system
relies heavily on efficient Inter-Process Communication (IPC). The complexity of the
communication sub-system can vary greatly from system to system. For example in a
homogeneous distributed environment there is no neced for complex data translations to
accommodate for differences in machine architectures while in heterogeneous systems
canonicai data can be a costly, albeit necessary, overhead of communication. It then
becomes necessary to quantify the performance of the system’s IPC facility at all levels of
communication (i.e. cest of message formation, data translation, routing algorithms, etc.). In
short, we must be concerned with the amount of overhead is incurred in passing a message
from one entity in the system to another. Metrics used to characterize this aspect of
performance are thoroughly described in a subsequent section.

2.0.4 Global Resource Management: Another desirable attribute shared by most distributed
systems is the ability to do (or support for doing) global resource management. For some
systems this capability may be as robust as as an algorithm that does load balancing or global
scheduling based on application level specifications of real-time attributes. While the
efficiency of such algorithms can be the most important factor in overall distributed system
performance it has been deemed outside the scope of our work as Cronus, the distributed
computing environment studied, does not perform global scheduling and management of
resources automatically at the kernel level.

Cronus relies on the underlying local or constituent operating system for scheduling of its
processes. The choice of where to run distributed system se.vices and distributed application
processes is left to the application designer and implementor. As a consequence, the complex
problem of efficiently balancing CPU, disk, and communications resource usage in the
distributed environment must be solved by the application implementor. A more detailcd
description of the Cronus distributed environment is contained in a subsequent section.

Section 3

3.0 Distributed Operating System Evaluation: In this section we outline the metrics used to
quantitatively and qualitatively assess the performance of the Cronus distributed environment
with respect to some of the attributes described in section 2. The hardware and software
environments used during the evaluation are described in section 3.1. This includes a
description of the two distributed environments considered, namely, the Cronus Distributed
Computing Environment and Sun Microsystem’s implementation of the Remote Procedure
Call (RPC). In section 3.2 an applicauon model is described that was used to characterize
the distributed system’s ability to concurrently process. The results obtained after
implementing and running this application in both the Cronus c¢nvironment and using Sun
Microsystem’s implementation of the RPC are presented and discussed. In section 3.3 the
metrics used to assess the overhead incurred in using the replication mechanisms provided in
the Cronus environment is discussed. Again, the results obtained in the Cronus environment
are presented and discussed. Finally, in section 3.4 we desernibe o detaled analysis of
overhead incurred throughout all phuses of the invocation and response cyele for a standard
invocation within Cronus. This data can be used to characterize possibly burdensome
subsystems within Cronus with respect to Inter-process communication.

3.1 The Hardware uand Software Environments: The hardware contiguration of the
experimental system used for benchmarking consisted of three Sun workstations (two 3/2607s
and one 3/280). The constituent operating system used was Sun OS version 3.5 (generic
kernel with 16 MB main memory). These workstations were connected en a local area
network with a bandwidth of 10 Mb/s. and using IEEE 802.3 media access protocol. The
whole system was dedicated to this experiment with no other load on 1t.

3.1.1 The Distributed Environments: This section briefly describes some of the attributes
and featyres of the two distributed environments studied in this portion of the evaluation. The
section also elaborates on some of the environment specific implementation issues addressed
for each.

31.1.1 Cronus Distributed Computing Environment: The distributed computing
environment evaiuated duning this effort is called Cronus and was developed by BBN
Laboratories Incorporated. This section contains a brief description of Cronus.

The Cronus distributed environment is based on the object oriented mode! for distributed
computing [21]. Cronus basically consists of services, clients, and the Cronus kernel. A
service consists of one or more manager processes that define and manage the objects of one
or more types. An object within Cronus is a resource, such as a file, a directory, a mailbox, an
inventory, or sensors. Objects are generally considered as passive entities stored on a disk.
Object type definitions are organized in a type heirarchy that allows new types to be created
as subtypes of cxisting ones. Services (often referred to as managers) implement both system
functions and application functions. Current system services provided by Cronus include an
authentication service, a symbolic naming service (global), a network configuration service, a
distributed file service, and an object type definition service. Clients within Cronus are treated
simply as processes that use services.

HOST 1 HOST 2

1y

Sbject b} ecr
3r\anpr a a(\pﬁ

Zronus Kerre!

]

Constituent OS

Cronugs xernel

'

—onstityent 0S

Constituent OS

:

Cronus Kernel

]

Object Object
Manager Manager

Figure 3.1.1 The Cronus Client-Server Implementation

The main function of the Cronus kernel is to route invocations from the invoking clients
to th;ir appropriate servicing Object Manager. The Cronus kernel is implemented as a
constituent operating system process (in our case a Unix process) and executes in user space.
In other words the Cronus kernel is essentially a locator and an operation switch which helps
in identifying the appropriate entity responsible to carry out the computation. The kernel is
run on each node in the cluster. Figure 3.1.1 shows the architecture of ‘the Cronus distributed
environment[21]. Cronus interprocess communication (IPC) is designed to support operation
invocations from clients to services, where the invocations can be synchronous or
asynchronous. An invocation can be broadcasted or can be targeted to a single object
manager. The IPC is implemented as a series of protocol layers. Cronus relies on a standard
communication protocols such .as TCP, UDP, and IP [16] which are implemented by the
native operating system. Cronus adds three layers on top of the Tranport layer of ISO
reference model [22].

The lowest layer defined by Cronus is the IPC layer. This layer implements three
communication functions: Send, Invoke, and Receive. Invoke is used by a client process to
invoke an operation on an object. The invoke is implemented as a message addressed to the
object. The message is routed by the Cronus kernel to the process (local or remote) serving as
the object’s manager. The object manager fetches the message from its message queue using
the Receive function in order to perform the requested operation. The operation is performed
by a lightweight process created by the object manager to execute the code implemented by
the application designer. After completing the operation execution the manager uses the Send
primitive to return the reply to the client or application process. The reply message is
returned to the client by the Cronus kernel who receives the reply using the Receive function.
The separation of the client’s Invoke from its later Receive allows asynchrony and .
concurrency.

Above the IPC layer is the message encoding layer. This layer is responsible for encoding
and decoding messages using canonical data representations which are system independent
and allow transmission of messages between machines with differing internal representations.
Cronus defines canonical data representations for a number of common data types and
structures and allows the user to define new canonical types from existing ones [2].

The highest layer implemented by Cronus is the operation protocol (OP) layer. This layer
presents the remote procedure call (RPC) interface to the application designer. This layer
allows only synchronous or blocking invocation.

It should be noted that Cronus helps with the burden of coding applications in a
distributed environment through the use of a nonprocedural program development specification
language [3]. The user can.provide nonprocedural specifications of a new object type, and
operations to be implemented by the manager (an example can be found in Appendix A).
Subsequently the code for a skeleton object manager can be automatically generated which
includes client RPC stubs, data conversion between canonical and system specific data
representations, message parsing and validation, operation dispatching, and stable storage
management (for persistent objects). The user then completes the object manager by designing
and coding the routines that implement the operations defined for the new object type.

-7

3.1.1.2 The Sun RPC Environment: Since RPC is becoming an international standard to
support communication among heterogeneous distributed systems, we decided to benchmark
the performance of the Sun Microsystems implementation of RPC and compare it with the
Cronus Distributed computing environment based on computational throughput (reference
section 3.2). For this reason we briefly discuss the Sun RPC implemientation in this section.
Sun RPC provides a communication paradigm for distributed applications also using a client-
server model[20]. For"this purpose the client first calls a procedure to send a data packet to
the server. When the packet arrives, the server calls a dispatch routine, performs whatever
service is requested, sends back a reply, and the procedure call returns to the client. When
specifying the server the user needs to register it with a server daemon (portmapper). Also
the external data representation (XDR) routines in both the client’s and server’s code need to
be specified so that they can be used to translate arguments and results to and from the local
machine’s internal data representation. The aforementioned functions are included in supplied
libraries as well as other stub routines necessary for remote invocation. In a typical
interaction scenario the client first marshalls the arguments into an invocation structure (i.e.
translation from local machine representation to canonical representation and complete
message formation). It then broadcasts a message to all the node’s portmappers to identify
the desired server (i.e. determine what socket the server is listening to). After a response is
received a direct connection is established between the client and the server (server’s
dispatcher). Next the message is sent to the server where the arguments are taken from the
message structure and translated into the local machine’s internal representation. The server
executes the requested operation in its own address space making use of any of the
aforementioned translated input parameters. The result of the operation, if any, is then
translated canonically and the response message structure is formed. The message is finally
sent to the client where it is translated into its internal representation before it is delivered to
the client. Upon the reception of this message the client process continues. This represents
the standard RPC call.

3.2 Benchmarking Computational Throughput: As we have mentioned in section 2.0.1 a
distributed system’s ability to concurrently process can be used to improve application
performance since an increasing number of computational resources can be applied to the
problem at hand. Thus, a distributed environment should be benchmarked with respect to this
attribute in an attempt to characterize its performance. In this section we describe a
distributed application that was designed and used to benchmark this attribute of the
distributed environment. The results obtained using this benchmark, as well as the results
obtained from any benchmark routine, should not be interpreted as a gauge of overall
performance but as a measure of performance subject to a very specific set of conditions.

3.2.1 The Proposed Model: To accomplish the aforementioned benchmarks we designed and
implemented a computational model within thé Cronus and Sun RPC distributed environments
that was used to characterize the underlying distributed environment’s ability to concurrently
process. A model for benchmarking the aggregate performance (in Dhrystones/sec) of a
distributed computing system, while varying the number of concurrently active processes in
the whole system has been developed. Specifically, the following three effects were studied
for the distributed environment in question:

1. The effect of increasing the number of processing nodes on the
aggregated performance measure, that is Dhrystones/sec.

2. The effect of increasing the number of processes per node, which
directly carry out the benchmark calculations.

3. The effect of varying the processing load assigned to each of above .
processes.

Within this framework we developed some important benchmarks for the Cronus Distributed
Computing Environment [21] and, by way of comparison, the Sun Microsystems
implementation of the RPC [17]. The developed model is general enough to characterize the
concurrent processing capability of any distributed computing environment.

It was decided to use a benchmark figure that is familiar within the research community.
The Dhrystone benchmark [18] was chosen because it is a well known set of procedures used
to benchmark centralized systems [19] (based on processor/processor clock speed and
compiler used). In order to obtain meaningful benchmark results the main consideration was
to use more computational intensive processes with less interaction with the underlying
constituent. operating system. The Dhrystone does not interact with the underlying constituent

* operating system (in our case UNIX) and can be fully encapsulated within a server (or
manager). In other words, the routines make no system calls and do not interact with the file
system. For the types of distributed systems that are implemented on a native operating
system it is necessary to carefully choose the encapsulated benchmark procedures so as not to
interact with the underlying systems such as UNIX, VMS etc. ‘

Based on the characteristics of Cronus and Sun RPC, we assume a client-server model

[20]). In this model clients make calls to a population of servers which can be resident on
several nodes in the system. These nodes are generally processors interconnected through a

-0-

network which provides a transportation mechanism for carrying messages among the entities.
The servers are inactive entities waiting for an invocation from a remote client. The
processing model describes the types of processing and interaction needed among a client and
servers to carry out the desired benchmarks. The server encapsulates a routine capable of
* calculating a desired number of Dhrystones requested by the client process. The proposed
processing model is essentially a distributed benchmark application that is designed to invoke
a number of servers that are evenly distributed among a number of nodes (see Fig. 3.1.1).

As mentioned above, in order to obtain the overall performance the number of Dhrystone
computations performed by each server is varied by the client application process. - In general,
we first decide on the total number of nodes which constitute the distributed operating
environment, then, through a series of remote calls, a fixed number of server processes are
created on each of the nodes. The aforementioned initialization of the distributed environment
(as well as all test runs) was fully automated using a set of simple shell scripts written using
the underlying constituent operating system (Unix). This demonstrates one of the unique
qualities of a distributed computing environment like Cronus. An application designer may
make full use of the many features of the local operating system he is accustomed to while
also using the many features gained through the use of distribution and multiple resources in
Cronus. Next each of the server processes are then invoked by the client to carry out a
certain number of Dhrystone calculations. When a server completes its calculations
successfully, it then sends an appropriate message to the client application process. The client
process, upon receiving all such messages, calculates an aggregate performance measures (in
Dhrystones/sec.) for the distributed environment.

The general flow of processing for the client application process and the server processes
are described below. Implementation pseudocode specification for the Cronus and Sun RPC
environments used in our experiment are described in Appendix B.

Client Application Process

1.) Obtain the system time locally to determine the start time of the experiment.
It is assumed that all of the server processes on the appropriate nodes
have been created.

2.) For each of "n" servers running on every node invoke a Dhrystone
operation wuh "k" number of benchmarks to be performed. (NOTE: The
application process invokes servers in a round robin fashion on the nodes
integrated in the distributed system. That is, the invocation of server 1
is first sent to node 1, then to node 2, and then to node 3 (assuming 3
nodes are integrated in the system). Then invocations for server 2 are then
sent using the same order of nodes and so on. The process of invoking
servers continues until all the servers integrated are invoked.

3.) Wait for a success response from each and every server.

4) Take another time hack locally to record the finish time of the
experiment.

o -io-

5.) Since the total number of invocations is known to the client
application process and the e¢lapsed time to do those benchmarks is also
known, the aggregate rate of calculating Dhrystones benchmarks for the
distributed environment is then computed.

[t is important to note that all invocations must obviously be non-blocking (if not, the
computation will not be concurrent) and that the invocations are done in round robin manner
i an attempt to balance the processing load on each node. Also, the invocations are
performed sequentially rather than by broadcast in an attempt to keep the application design
sufficiently generic (that 1s, not all distributed environments support lower level broadcast).

Server Process

1.) The number of Dhrystones to be calculated (k), is extracted from the
message received trom the client process (this also assumes that the
data has been translated into the machine’s internal representation

as well).

2.y Call the local Dhrystone calculation procedure k times.
3.) Prepare and send the response to the client application process.

Since every distributed environment must support remote computations {(albeit with varying
facility), the above model is sufficiently generic for characterizing distributed systems and
studying their performance while varying the various parameters mentioned above, assuming
full load balancing capability.

3.2.2 Implementation Details: This section briefly describes the benchmark implementation
details that were specific to each of the two distributed environments used.

3.2.2.1 Cronus Benchmark Implementation Details: Specifically the Cronus test application
uses direct addressing of operation invocations, that is the application knows where all of the
individual object managers (servers) reside. This is not necessary since the Cronus kernel
provides a locate mechanism that enables the application designer to only specify the rype of
the object manager and the operation to be invoked. The direct addressing mode was used in
order to avoid possible overhead of doing a kernel locate (i.e. wanted the maximum
capability of the environment). Also, the test servers (managers) do not maintain persistent
object state. That is they do not fetch the variables manipulated by the Dhrystone procedures
from the object database stored on disk. The reason for using this approach is to attempt to
achieve a maximum capability. It would be interesting, however, to declare some fixed
percentage of the manipulated variables as object state and force the operation (Dhrystone
calculations) to interact with the object instance database every time they are manipulated.

3.2.2.2 Sun RPC Benchmark Implementation Details: The benchmark application requires

-11-

that all the invocations must be non-blocking. It would appear at first glance that the RPC
environment would be inappropriate for such an application. This is not true, however, since it
1s possible to design such an application using Sun RPC. Sun RPC allows non-blocking calls
provided a result is not cxpected from the scrver (which is also referred to as remote batch
processing). To implement the benchmark application and to receive a result at the client site,
it is essential in the Sun RPC implementation that the client register itself as a server, after
sending all invocations. We call the client operating in this mode a pseudo server. In this
mode the application then essentially waits for the Dhrystone servers to invoke operations on
it to provide the result (Success flag) as an argument. An analogous method is used in the
implementation of the Dhrystone servers. They first start as a server to the application client
routine then, after calculating their k£ Dhrystones, they become pseudo clients of the original
client process (which would be acting as a pseudo server). This technique can work
satisfactorily but has one limitation. Sun RPC requires that the transport layer mechanism be
TCP when doing remote batch invocation. Normally RPC requires a connection for each
invocation of a server but, since we require an invocation on the the application for each
result, we double the number of connections being established and broken down. This is an
overhead if we constrain ourselves to using Sun RPC and not altering lower layers of its
protocol hierarchy. A pseudocode specification for the Sun RPC implementation has been
included in Appendix B.

3.2.3 Discussion of Results: For both the Cronus and Sun RPC domains the test application
described was run in the configuration described in section 3.1.

In order to study the effects of increasing the number of processing hosts and the number
of servers per host, the system was initially configured as a single host system and was
populated gradually with an increasing number of servers. Subsequently, the configuration was
expanded by incorporating two more hosts. The servers were instantiated on all the three hosts
by gradually increasing their number but keeping their population balanced among the hosts.

More specifically the environment and workload for benchmarking is described as follows:

{1 host case:} In this case experiments where performed by first invoking a single
server and gradually increasing their number to 10. For each of these configurations
the benchmark application described in section 3.2.1 was implemented both for Cronus
and Sun RPC as described by the pseudocode in Appendix B which essentialy
consisted of a series of Dhrystone calls. The number of Dhrystones 1o be computed by
each server per call was varied as 500, 700, 1000, 2000, 3000, 4000, 5000 7000, 8000,
9000, 10000, 20000, 30000, 40000, and 50000.

{2 host case:} This case is essentially the same as case 1 in terms of implementation.
However we attempted to achieved balanced loading among the two hosts by invoking
the servers in a round-robin scheme. The round-robin scheme provided a good balance
of load, except when the number of Dhrystones to be calculated was small. More
discussion of this experience is given later in the section.

{3 host case:} This case is also identical to the 2 Host case in terms of its
implementation and invocation of servers for load balancing.

-17-

The raw data from each run for both the Cronus and Sun RPC domains are included in
Appendix C. The analyses of the trends and behavior for each of the environments are given
in Figures 3.2.1 through 3.2.5. A discussion of these graphs as well as some possible reasons
for the observed behavior are discussed in the following subsections.

3.2.3.1 Results for the Cronus DOS Implementation: Figure 3.2.1(a-d) provides the
aggregate response of the distributed environment (Dhrystones/sec.) versus the load placed on
each OM (Object Manager - server) in terms of number of Dhrystones to be performed per
call. This figure represents the cases where 1, 2, and 3 hosts integrated into the environment.
In these figures we have included the cases where 2,4,6, and 10 OM’s were running per host.
It can be noted from these figures that the the throughput (in terms of aggregate
Dhrystones/sec) increases as the workload increases. Since, with the increase in the load, a
greater percentage of the overall time spent by the distributed environment is in actual
calculation of Dhrystones as opposed to the percentage of time spent in coimnn:anication
involving server invocation and response, the canonical translation on both ends, and actual
message transmission, the environment starts acting more like a multiprocessor system rather
than a distributed system.

It can also be noticed that there is always a payoff when we add more hosts to the
configuration (see Figure 3.2.1(d)). However at the same time communication overhead
increases as we increase the number of hosts. Therefore there exists a tradeoff between the
amount of computation performed per host (Dhrystones/call), the number of servers, and the
number of hosts integrated into the system. This is discussed later in this section.

Another important observation which can also be made from Figure 3.2.1(d) is that for the
test cases of 1, 2 and 3 hosts, the maximum throughput approached very closely to the
benchmarked capability of 1, 2, and 3 Sun 3’s respectively, regardless of the number of the
servers invoked on each host. During this experimentation the Sun 3 was also benchmarked
using the same Dhrystone procedures which were encapsulated within each server. The
resulting performance was 6216 Dhrystones/sec. This result was also obtained for the single
host case for which the maximum aggregate performance was 6090 Dhrystones/sec. For the
two host case the maximum aggregate performance was 12030 Dhrystones/sec, which
approaches the maximum capability of 2 Sun 3’s. Also, for the three host case the result was
17952 Dhrystones/sec which also approaches the performance of three Sun 3’s. The results
presented here are valid benchmarks due to two reasons. First, the system was dedicated to
the experiments with no other user. Second, since the throughput in all the cases approaches
the maximum capability of the Sun 3 hosts, we assert that all the hosts were kept busy during
our experimentation with negligible interference from the constituent operating system.

Figures 3.2.2 (a) and (b) give a slightly different view of the data. For each of the plots
the aggregate response is plotted versus the number of OMs (servers) that are running in the
test configuration per host. Each curve corresponds to a specific load being placed on the
individual OMs (Dhrystones/invocation). It can be noticed from these figures that by adding
more OMs running on each host an incremental increase in the aggregate performance
(Dhry./sec.) can be obtained. After reaching a certain level the performance remains
approximately constant before it starts decreasing. The range over which performance remains
at a certain maximum level depends on the number of hosts and the number of

-13-~

CRONUS 1 HOST

Dhrysiones/sec x 103

6.10

6.00

5.90

5.80
5.70

5.60

4OM yHOST
7 OM*THOSTS

5.50

3.40

3.30

5.20

5.10

5.00

4.90

4.80

470

4.60

4.50

4.40

4.30
4.20

aﬂxlo3

10.00 20.00 30.00 40.00 50.00

Figure 3.2.1(a) Thoughput of Cronus for | host.

-1A-

CRONUS 2 HOSTS
Dhrystones/sec x 103

10 OM' VHOST
1220 SOM RO
1200 Tz~ oM gHosY
11.80 T ST —_|_|7oMpivst
11.60 Pt E——
11.40 ' e ——
11.20 e ,
11.00 O 7
10.80 >
10.60 L7 &
10.40 el -
10.20 " g
10.00 l'.‘ T *
9.80 .':: L
9.60 T ’
9.40]
9.20
9.00 \ 3
8.80 b—YL
8.60
8.40
8.20
8.00
7.80

fo = == =

|
pdu
7.40 —4

10.00 20.00 30.00 40.00 30.00

Figure 3.2.1(b) Thoughput of Cronus for 2 host.

CRONUS 3 HOSTS

Dhrystones/sec x 103

TOMHOST ™
TOMHSST -
3 OM HOST™

18.00

17.50

17.00

16.50

16.00

15.50

15.00

14.50

14.00

13.50

13.00 |yt

s |—]
12.00 :LL

11.50
11.00 /
10.50

{

10.00

-Dhry all x 103
10.00 20.00 30.00 40.00 50.00

Figure 3.2. 1(c) Thoughput of Cronus for 3 host.

_16-

CRONLUS 1,2 AND 3 HOSTS

Dhrystones/sec x 103

YHom I0OM'vH
18.00 e
YAsR 4 OGMV "
- SHoat IOM'VH ==~
ety IaE 0B -
o e ¥ Hoes 6OM'H ™ ~
15.00 Y A Tl COM
NIV Tz TNl
14.00 .//: >
13.00 |—] .:.ﬂ“l@?. 2. gﬂ“ ‘%ﬁﬁ _____
| / YHos 3OM™H =~~~
12.00 i - — ‘_iﬁ?'_:;zr‘
- - -) e o ws e
00 = S
! _“[) g _ A
10.00 p r —-
g
9.00 ,?
8.00 —
4
7.00
6.00 1
/ [.: P Y XX S
.00 —=5%
‘I
) yswoaes/call x 103
10.00 20.00 30.00 e e

Figure 3.2.1(d)

Thoughput of Cronus for various hosts.

-17-

Dhrystones/ sec x 103

12.20
12.00
11.80
11.60
11.40
11.20
11.00
10.80
10.60
10.40
10.20
10.00
9.80
9.60
9.40
9.20
9.00
8.80
8.60
8.40
8.20
.00
1.80
7.60
7.40
7.20

Figure 3 2.2(3)

CRONUS

2 HOSTS

\
/ rese="®
_—rs_l 2
/ ‘.0’.. "ﬂ.
4 p A
/ 2 .
/ v
[
’
“'..'l' ‘~§ ‘\‘
. ® AJ
i) o)
14 2N
/I o’
A \ 3
r) s
&
G LY
! A]
.
\
Py, N
7 Y
' .
T -“
! 8§
' A}
[-
o
4
-
2.00 4.00 6.00

$.00

10.00

30000 dhry/call
Y0000 dhryjeall

OM’¢/host

Throughput of Cronus for various OM/Host (2 host).

CRONUS 3 HOSTS
Dhrystones/sec x 103

30000 dhry/call
1800 /L\f Y0000 dhryicall
17.50 YO0 diryreal "
17.00

16.50

16.00 £ /F\

15.50 L —

15.00 7] N
14.50 LY, Zoa,

() . ‘wertn .\‘ K‘
[A} . b
14.00 A—fol s .
,"I ‘k .

13.50 / ad . ~

~ \[; \\ K
13.00 - "

\ “

1200 |1 - B!

11.50 2 o

- -y
11.00 A
10.50 2
10.00 h =

OM'svhost
2.00 4.00 6.00 8.00 10.00

Figure 3.2.2(b) Throughput of Cronus for various OM/Host (3 host).

-19-

Dhrystones/call. This effect can be explained in general by realizing that there is a trade-oft
between the cost of interaction in the distributed environment (e, message formation,
canonical translation, etc.) and the amount of useful work being done by each host (ie.
Dirystone calculations).

For example it can be noticed that the range at which the performance remains at the
maxmmum level increases with the number of Dhrystones/call. This indicates that the amount
of useful work requested for each host remains substantially higher as compared to the
overhead associated with the number of invocations. In other words, this overhead has little
impact on the overall performance of the distributed system even if a large number of servers
are invoked. However for a smaller number of requested Dhrystone calculations
(Dhrystones/call) the overhead associated with invocations has a pronounced impact on
performance. The reason for this decrease in performance is due to the fact that as the number
of OMs running per host are increased (or increasing number of hosts as well), the overhead
involving invocations in terms of message formations, and canonical translations also
increases.

Another possible explanation of this effect may be found when we consider that Cronus
runs on a constituent operating system. It is possible that we are witnessing the effects of
increased process scheduling, paging, etc. on the underlying operating system (Unix).

We want to indicate that this overhead does not appear to be a linear function of the total
number of invocations. For example, for the case of 2 hosts, with 5000 Dhrystones executed
by each of the 5 servers (per host) produce an aggregate performance of 9421 Dhrystones/sec.
On the other hand, for the case of 10 servers per host, the aggregate performance is 7436
Dhrystones/sec. The total number of Dhrystones to be calculated at the remote site in the
latter case is exactly twice the number in the former case. Since, the host is always active for
the experiment, we can note that the average time spent to process (generation, unpacking,
etc.) an invocation is not cxactly the same in both the cases. A simple calculation can reveal
that for the case of 10 servers/host the time incuricd for total overhead is not twice that for
the case of 5 servers/host. Such an observation can also be made from the non-linear trends of
the graphs for a small and a large number of OMs in Figures 3.2.2(a) and (b).

For low computational requirements this effect is prominent. This may be due to the fact
that for low computational requirements, a process suffers less of a penalty for swapping out
of a host CPU than for the case where a process needs to perform extensive computation (for
example, more than 10.000 Dhrystones). The effective overhead associated with process
swapping is the probable cause of the sharp increase in throughput for a small load with a
small number of OMs (ref. Figures 3.2.2(a) and (b)). On the other hand. the overhead
associated with a large number of invocations (for a large number of OMs) causes
performance degradation at an increasing pace for smaller load values than for larger load
values.

The non-linear phenomena disappears as we increase the number of Dhrystone calculations
per server. This is clear for the case of 50.000 Dhrystones/call in Figs. 3.2.2(a) and (b).
However, as mentioned above, we also expect this curve would drop off as we increase the
number of servers beyond a certain value.

-20-

We want to comment that although there exist certain spurious data points in the range of
maximum performance of these graphs, the maximum deviation from the average trend is
rather negligible. A number of factors may be causing these spurious data points, such as
retransmission of messages on the communication channel. However, these graphs are meant
to display more of a trend rather than specific observation points.

3.2.3.2 Comparison of Results for Cronus and Sun RPC Environments: An analogous set
of graphs provided tor the RPC environment have been included in Figures 3.2.3(a)-(f). It can
be observed from these figures that the performance trends for RPC are similar to those
exhibited by the Cronus environment. The comparison between the two systems is shown in
Figures 3.2.4 and 3.2.5. From Figures 3.2.1(b)&(¢), 3.2.3(b)&(c), 3.2.4, 3.2.5, we notice that
both environments are comparable in performance for higher loads (Dhrystones/call),
irrespective of the number of servers invoked at each host. The reason being that the
percentage of time spent in actual calculaton of Dhrystones is much higher than the
perecentage of time spent in interaction among servers and client (i.e. canonical translations,
communication). However, for smaller loads (see Figures 3.2.2(a)&(b). 3.2.3(e)&(f)) (less than
10.000 Dhrystones/call) the Cronus throughput reaches its maximum value for a lower number
of servers per host as compared to Sun RPC, while in the Cronus environment this maximum
level s for the most part greater than or equal to that of the Sun RPC environment. Also, we
notice that performance decreases more abruptly as we increase the number of servers running
per host in the Cronus environment.

There may be a number of reasons for this observed result. The first one 1s the added
overhead present in the Cronus implementation of the IPC layer (discussed in Section 3.1.1.1).
Such an overhead is not present in Sun’s implementation of the RPC communication
hierarchy. Also. Cronus routes all messages through a Cronus kernel process running on each
host while Sun’s implementation of RPC establishes a connection between the communicating
client and server. The effect of added message processing done by the Cronus kernel and
handling lower level communication through its constituent operating system (Unix) manifests
iself in the observed performance as we increase the number of servers in this environment
and hence the amount of message traffic being generated. On the other hand, in Sun RPC
interprocess communication is directly handled by the lower levels of the IP hierarchy.
Another reason for this observed result may be a possible optimization of Sun RPC
implementation by using implementation specitic knowledge of the constituent operating
system (Sun OS version 3.5).

-721-

Dhrystwoneysec x 103

6.10
6.00
5.90
5.80
5.70
5.60
5.50
5.40
5.30
5.20
5.10
5.00
4.90
4.30
4.70
4.60

4.50

SUN RPC 1 HOST

10 SERVERSAIOFTS
_______ 4 | CSERVERSHOMY
gt il n el |3 VERVERSHOSTS
ees3v” e -~
e ol 4-_4—"7""’0 2 SERVERSTHOSTS
j#;;e‘:’"- r’ﬂ
il .
/. -
/ pa
" rd
4
Ve 2
» " ’
h] rd
4 i ’
Yy
1154 PR
i ,
Al
IR
)2
T
/.' u
i [5Y
SN
gl
—IT
N ,,f“
o
g i
Y
1 4
—
1
[
mel@
10.00 20.00 30.00 40.00 56.00

Figure 3.2.3(a)

Throughput of SUN RPC for 1 host.

SUN RPC 2 HOSTS
Dhrystonewsec x 103

-

"0 SERVERSHOST
12.00 % SERVERYHOST
11.80 el | WSRRVERSAHGET
% 3ERVERSHOST
11.60
11.40
11.20
11.00
10.80
10.60
10.40
10.20

10.00

> 4[”
’

9.60

/I
9.40 —f—=
9.20 |—d
9.00
2.80
8.60
8.40
8.20
2.00

--F-

all x 103
10.00 20.00 30.00 40.00 $0.00

Figure 3.2.3(b) Throughput of SUN RPC for 2 host.

-73-

SUN RPC 3 HOSTS

Dhrystones/sec x 103

0 SERVERS/HOST
18.00 it
...-39 |6 SERVERSHOSY
17.50 =1 TSERVERSHOST
17.00 _ s ™ O TSB“ERE/HBST
- /
16.50 5 7
o" s /
16.00 '.‘r, r @
Ry 4 A
15.50 WA >

l‘ ,
/(/
15.00 " 7
VAR
14.50

14.00

sa—{

13.00 y

12.50 |

12.00 }—U4—4

11.50

11.00

10.50

10.00

9.50

all x 103
10.00 20.00 30.00 40.00 50.00

Figure 3.2.3(c) Throughput of SUN RPC for 3 host.

7

Dhrystones/sec x 103

18.00

17.00

16.00

15.00

14.00

13.00 |

12.00

11.00

10.00

9.00

8.00

7.00

6.00

5.00

4.00

SUN RPC 1,2 AND 3 HOSTS

JHOST 10 SERVERGH

o"'ldl

YAOSTCSERVERSH
YHAOST ¢SERVERS 1 ~

| | THOsT2 SERVERSH
THOST TO SERVERTH

THOSTGSERVERS/H
YHOST ¢ SERVERSAH ™

YHOST 7 SERVERSH

1 HOST [0 SERVERGH
THOM CSERVERS A ~
THOST TsERVERSAH: ~

p.—"“ -

THOsT2 SERVERSH

1

I
1y
|

Can,

&Mm x 103

30.00

Figure 3.2.3(q)

-?5-

Throughput of SUN RPC for various hosts.

SUN RPC 2 HOSTS
Dhrystones/sec x 103

W
12.00 /\// '\ ' ’m.dﬁr.y.laﬁ
—| |300ddnryseali” "~
11.50
1100 AN

10.50 / S ’_;,._.r_

10.00

-z .v-.—.- nd
N ’.Q.. ®
s B 2
9.50 :
o" 4‘ th.‘sc
20—/ e |
l' '0‘ -°*---l
O'. 4 ‘
8.50 ¥ 7%
] [4
] 4
'.' _,J
8.00 p—+ J'
. "
¢
‘
AI
7.50 —
4
Servers/host
200 4.00 6.00 8.00 10.00

Fig. 3.2.3(e) Throughput of SUN RPC for various Servers/Hosts (2 hosts)

Dhrystones/sec x 10°

SUN RPC

3 HOSTS

18.00

(

17.50
17.00

16.50

16.00

15.50
15.00

14.50

14.00

.4-----"-

13.50

00—

12.50

12.00

11.50 <3

”
11.00 -

!

[

10.50 r-L

10.00

9.50

‘.--q

9.00

.30

Fig. 3.2.3(1)

4.00

_27-

6.00

$.00

Y000 dbeyrall
YO000 dhry/cail

000 dbryicall” "
Solo akryk

Throughput of SUN RPC for various Servers/Hosts (3 hosts)

CRONUS AND RPC COMPARISON
Dhrysiones/sec x 103

18.00 YoM THOST —
| | Y3 THOST
17.00 YOM'dh THOS "
| {3 3avehzHOSY "
16.00 TOM'hTAGST ~ -
¥ Serversh [HOST ~
15.00

14.00 /
12.00

P 0:¢1r OOOOOOOOOO Yrowecccssccces 4
ll.m J;..’:.!..
10.00 -
Y
[}
9.00 [—iyde-
od []
8.00
7.00
6.00
f& R T # >
5.00 L
e
4,00 —2
3 103

Figures 3.2.4 Cronus and RPC Comparison

CRONUS AND RPC COMPARISON
Dhrystwones/sec x 103

YoM TRST —
18.00 P M
17.00 YOM AYHSSY ™
' Vivernh Y HOME "
16.00 TOM'TAGT ~ -
' // ¥ swrvanh T HGST =

15.00 .

14.00

|
]
|

. L".v-vde.-o-'.-"' ''''' 1
ll.m ! 0.0":0 s
o: ,"
10.00 L—L“
[4
9.00 7+
8.00 —%
7.00
6.00 S—
. ~ - - lpm—— _v?"'-_
7 e
5.00 —+
: x 103
10.00 20.00 30.00 «.00 50.00

Figures 3.2.3 Cronus and RPC Comparison

<0

3.3 Benchmarking Availability and Survivability: As described earlier, there are many
different attributes that characterize a distributed operating system (DOS) environment. In
this section we will look at the DOS environment’s ability to make data and/or processes
more available and survivable using replication. There is however a price to be paid in using
replication. An example of which is the DOS environment’s overhead in keeping the
replicated copies consistent. For this we used a performance metric to compare read and
write latency times when accessing replicated copies as oppossed to non-replicated copies.
This metric is generic and can be easily implemented on any DOS environment that has the
ability to replicate data. Cronus provides mechanisms to support replication where as Sun
RPC does not, therefore we will only discuss Cronus in this section.

3.3.1 The Proposed Model: The model is essentially a distributed application consisting of a
“client” and "servers”. The application will enable us to compare read and write latency times
for accessing replicated objects as opposed to non-replicated objects. The data gathered using
this application will allow us to determine a performance cost that must be paid for the added
benefits of replication.

The application first creates a non-replicated copy of some data type. It should be noted
that the data should not be located on the same host that is issuing the invocations. This
forces the non-replicated portion to use remote communication mechanisms, thus making a
better comparison with the replicated portion. The basic flow of the non-replicated portion of
this test is as follows:

1) Gbtain the local system time in order to record the start time of the experiment.

2) Invoke a read operation.

3) Wait for response that read completed successfully.

4) Obtain the local system time in order to record the finishing time of the experiment.

These steps are then executed "N" times and the average read latency time is then
determined. The same basic flow is followed for the write operation and the average write
latency time is also determined. This will give us a baseline for comparison with the
replicated case. For the replicated portion of the model it is necessary to create a number of
replicated copies of some data type. It should be noted that the same data type, data, and
operations used to manipulate the data are used in both the non-replicated portion as well as
the replicated portion of this model. The replicated portion follows the same basic flow as the
non-replicated portion (as outlined above). The only real difference between the two portions
of the model (replicated vs non-replicated) is that we are using replicated mechanisms that
have to cooperate with all of the replicated copies. This cooperation may be necessary to
maintain consi.tency and detect any would be inconsistencies among the replicated copies or
some other reasons specific to the replication mechanisms implemented within the DOS.
Once the average read/write latency times for both the replicated and non-replicated portion
are determined a comparison of the results can be made to dctermine the cost that must be
paid in achieving vanous levels of desired availability and consistency.

-30-

3.3.2 Choice of Data: Since Cronus is an object oriented system, data items within the
Cronus environment are referred to as object instances. An object manager is used by Cronus
to manage objects of one or more object types. Within object types there can be any number
of object instances (data items). The fact that there may be any number of object instances
maintained by a Cronus object manager spawned concerns about how our results could
potentially be affected. For example suppose the data in question is of an employee record
type, in this example the object instances would be the information about each employee.
The concern is whether or not Cronus incurs greater overhead when accessing different object
instances (i.e. the 1st as opposed to the 1000th instance). This concern was laid to rest by
some companion work done by MITRE which determined there was no appreciable difference
in accessing the 1000th object instance as compared to accessing the 1st object instance. For
this reason and for simplification we decided to access (read/write) one object instance for
both the replicated and non-replicated portions of our model. For the object instance we
decided to create a user defined non-trivial canonical type built from Cronus provided
canonical types. The user defined canonical type selected for the object instance is a single
record containing Cronus provided canonical types which is used to store information about
an employee. A detailed description is given in Figure 3.3.1.

3.3.3 Replication in Cronus: When a replicated object is updated it is necessary to bring all
the replicated copies to a consistent state. Within the Cronus replication mechanisms there
are two update strategies; one being update by replacement, the other being update by
operation. The update by replacement strategy is performed by Cronus in the following way.
An operation is invoked on an object manager. This object manager performs the operation
and copies the entire object instance by way of object managers to other replicated copies of
that object instance. The update by operation strategy is performed by Cronus in the
following way. An operation is invoked on an object manager. This object manager performs
the operation and invokes the same operation on all the replicated object managers that
manage that object instance. Obviously update by replacement should be used for small data
instances while update by operation can be used for large data instances. The update
strategies are very easy to use in Cronus. To implement the different update strategies, a
simple one line addition is added to the type definition file describing which strategy is to be
used. A precompiler is then used to generate all of the necessary code to implement
replication mechanisms/techniques specified.

Cronus implements a form of version voting strategy to detect inconsistencies in replicated
copies. Every replicated object has a version vector. The version vector for a specific object
type contains a list of hosts that support object managers of the specified type and an
associated version number (ref. fig 3.3.2). When an operation is performed on the object
Cronus replication mechanisms collect the read or write quorum necessary and locks those
copies until the operation has been performed on all of the replicted copies it can locate. If
the read or write quorum can not be obtained Cronus will return an error message to the
application programmer. Cronus allows the application programmer to select read and write
quorums depending on his needs for data availability or consistency. To ensure maximum
availability the application programmer should select read and write quorums of one; this
however will sacrifice consistency. To ensure data consistency the sum of the read and write
quorums must be greater then the total number of replicated copies. Cronus does not however

CANTYPE REPITEM /* User defined canonical data type */

REPRESENTATION (S RERPITEM

RECORD
NAME ASC, T
ADDRESS ASC, [
crepgs Provided — PHONE. ASC, —d
AGE urel, =
WEIGHT: U321,

END REPITEM;

Variable length canonical
type used to represent ASCII
charactor strings.

Fixed length canonical type
used to represent unsigned
16 and 32 bit integers.

Figuze 3.3.1 Tetailed description of object instance.

-372-

HOST 1 HOST 2

VERSION VECTOR VERSION VECTOR
HOSTVERSION = Q2T VERRON -
object i 2 Object ‘
instanc % g Instance % 2
@ Qeojxcate Repiicate
i M
Zronus Kerne| Cronys Kerne)
Zonstituent 0S Constituent 0S
LAN

Constituent OS

5

Cronus Kerne!

Replicate
& VERSION VECTOR
p—

HOST1Y o
Object 1 - w—

Instance e -1

b L

HOST 3

Figure 3.3.2 Version Vectors

correct inconsistencies; it detects them and locks all copies to prevent further inconsistencics.
Cronus replication mechanisms detect inconsistencies by comparing the version vectors.
Cronus does provide a command to manually repair and unlock replicated copies called
"fixobject”. To implement the different number of read and write necessary, a simple three
line addition to the type definition file can be added.

Object location is implemented in Cronus as an operation on type object. Every object
created in Cronus is a subtype of type object. Therefore every object in Cronus including
replicated objects will inherit the locate operation from type object. When an object needs to
be located, possibly to have an operation invoked upon it, the locator first checks its local
object cache. If the location of the object is stored in the object cache the locate does not
need to be performed. If the object location ts not in the local object cache, the operation
switch invokes the kemel locate mechanisms which broadcast the locate operation to ali
operation switches (Cronus kernels). The operation switches in turn route the locate
invocation to the object manager (of the type object to be located) if it exists on its host. If
the object is managed by the object manager the host name 1s returned to the originating
locator. All hosts whose object managers manage the object respond. The results of the
locate are now stored in the originating locator’s object cache to be used when neccessary. In
our model we obtain read and write access latency data with and without the use of Cronus
kernel locate mechanisms. To obtain the read and wrnite data without incurring the overhead
of performing object location we simply invoke the appropriate operation on the object prior
to the actual test. This insures that the object locations will be stored in the object caches of
all Cronus kernels that are participating. To obtain the read wnte data using the object
location mechanisms we use a Cronus command "clear object cache™ on all hosts prior to the
acual test. We used this command to insure the object locations would not be stored in the
kernel’s object caches thereby quantifying the additional overhead incurred in performing
object location.

3.3.4 Benchmarking Cronus Replication: The higl icvcl deagn of Giis wandl! consists of an
application that invokes the read and write operations on the object manager that maintains
and manipulates the object instance. The configurations used for the implementation of our
model for both the non-replicated and replicated cascs are presented in figures 3.3.3 and 3.3.4
respectively. For the non-replicated case we obtained the average read and write latency
time for the application. The operations were invoked on a remote object manager which
manages the object instance. This latency time can be used as a baseline for comparison with
the replicated case. The replicated case is a bit more complex because of the many possible
choices that can be made in tailoring the performance of the replication mechanisms provided
within Cronus. As previously mentioned, Cronus provides the application designer with two
ways of updating replicated copies: the first is by replacement, and the second is by operation.
Another function Cronus has is a locate mechanism; this is used by replication to locate
objects. Cronus also can vary read and wnte quorums. This allows the applications
programmer to decide if the data should be consistent or available or a combination of the
two. All of the aforementioned replication mechanisms have been discussed in greater detail
in section 3.3.3. It is apparent that the design for the replicated case has become quite
complex due to the flexability of replication provided in Cronus. It is important to assess the
cost of doing replication in Cronus using as many of the possible combinations of features

Y

HOST 1 HOST 2

Instance

Criend) Object
Manager

Cronus Kernel Cronus Kerne!

] 1

Constituent 0S Constituent OS

LAN

FIGURE 3.3.3 M™Model For The Non-replicated Case

HOST 1 HOST 2

Rephicated
2 L

Zronus Kernel

;

Constituent OS

Replicated
oM

Cronus Kernel

'

Constituent OS

Constituent OS

'

Cronus Kernel

Replicated
oM

Object
Instance

HOST 3

Figure 3.3.4 Model For The Replicated Case

-F

supported. Therefore we design the high level model to obtain read and write latency times
for the following cases.

1) Every combination of read and write quorums (1-3), using object location mechanisms,
and update by operation.

2) Every combination of read and write quorums (1-3), without using object location
mechanisms, and update by operation.

3) Every combination of read and write quorums (1-3), using object location mechanisms,
and update by replacement.

4) Every combination of read and write quorums (1-3), without using object location
mechanisms, and update by replacement.

While the experiments described above will not allow us to make any sweeping statements
as to how "good" or "bad" Cronus implements replicated mechanisms, it will allow us to
make some qualitative statements as to why certain subsystems in Cronus may be more
efficient under certain conditions. We are unable to make any quantitative statements about
Cronus untl this generic metric is applied to another DOS environment and the results are
compared.

3.3.5 Discussion of Results: Figure 3.3.5 contains all data collected during this portion of the
evaluation. Essentially all read and write access latency times for various replication
strategies are provided. We decided to look at the case where the object defined has been
replicated at two other nodes (thiee copies in all). The data was collected with read and write
quorums varied (from 1 to 3) and the mode of update used was both "by operation” and "by
replacement” (for more discussion of how replication mechanisms are used in Cronus see
section 3.3.3). The data produced does not really provide any results that were surprising.
We notice that the overhead increases incrementally as we increase the number of votes that
must be collected by the local nod:’s manager (the manager managing the replicated copy on
the host from which the read or write invocation originated). This is not necessarily the case
as the Cronus kernel may cache the location of the manager on another host and route the
invocation there. However, it usually turns out that the local node’s manager services request
issued localiy. Since the ability to successfully perform a write operation is dependent on the
read quorum as well as the write quorum in Cronus (we must read the object from the object
database before we ~on owrite 1t), the write latency (with the write quorum held constant) will
increase as we increase the number of votes necessary to do a read (read quorum). As
mentioned previously the Cro.u: aernel maintains a cache of the locations of recently
addressed objects. If the object cache 1s empty or does not include the address of the object
of interest (object type of interest) the kernel uses a location mechanisin which broadcasts a
message to all the Cronus kernels in the configuration. When the objects of the type
requested are located the replication mechanism interactions can take place between the
replicated object managers. The data for the read and wrnte latency described above both with
and without kernel locate are also included in Figure 3.3.5. There was one result observ !
that was a bit suro-isii, . The data Tor the case when we updated remote copies "by operation”

Replication Data
Updaie by replacement & by operation (in seconds)

Read Write With Locate | Without Locate
Quocum | Quorum || Read | Write | Read | Write
1 1 .15 24 04 19
1 2 .15 30 04 2
1 3 .15 34 04 24
2 1 25 31 .15 23
2 2 .26 31 15 23
2 3 26 33 .16 25
3 1 27 34 .19 24
3 2 27 34 19 .25
3 3 27 34 19 24
] _————
Without Repucation: .04 06 03 .04

Figure 3.3.5 Data: Survivability and Availability Section

e

was nearly identical to the results obtained using "by replacement”. To explain what was
happening in both cases it was necessary to study the Cronus source code. The interactions
that take place in a standard read or write among replicated managers are as follows:

1.) After one of the replicated objects has been read or written to the followirs set of
arbitrations occur.

2.) SendVoteRequestsOut: A vote request is sent out to each of the hosts listed in the
version vector associated with the object. If the update strategy is "by replacement” a
copy of the new object instance is sent along at this time. If the update strategy is "by
operation” the invocation information for the operation invoked locally is sent along at this
time.

3.) CollectVotes: The coordinating manager waits for the number of vote responses
corresponding to the appropriate quorum.

If a write was requested the following are executed as well:

4.) SendCommitsOut: If the coordinator receives a quorum of votes it then sends out
commit messages to all the hosts listed in the version vector associated with this object.
This is a signal to all hosts that they may restore the new object to the disk or schedule
and perform the operation requested if the update strategy is "by replacement” or "by
operation" respectively.

5.) BumpVersionVector: The coordinator now increments its copy of the version vector
associated with the object.

The key implementation issue that effects the data is that the coordinator does not wait for
a signal from the hosts listed in the version vector after it sends out the commit messages
(SendCommitsOut). We would as a consequence expect the data to be approximately the
same since we cannot measure the differences in overhead tor each of the replicated managers
to update their copies by replacement versus by operation (Cronus does not wait until this is
done). From an application perspective this means that, if we use replication in Cronus and
perform a write operation, we cannot be sure that all copies have in fact been updated once
we return to the application. This should not be a problem since any inconsistencies should
be automatically detected the next time the replicated data is accessed (through the use of
version vectors). :

D0

=30

3.4 Benchmarking Interprocess Communication (IPC):

It was decided during the evaluation to study the individual components within Cronus to
determine not only how they operate but how efficiently they operate in the distributed
environment. As an attempt to achieve both goals we decided to look at a standard invocation
and response cycle within Cronus. Simply stated we looked at a read operation done on an
employee record consisting of name, address, telephone number, age, and weight. The record
was maintained by a Cronus object manager on a remote host. We then benchmarked
segments of the Cronus source code throughout the invocation/response cycle.

To further illustrate the work done refer to Figure 3.4.1 for the following discussion. First
a Cronus application (denoted APL.) is used to start the experiment (i.e. invokes an operation
on object manager #1 {denoted OM1}). Next OM1 invokes an operation on OM2 to read the
employee record given his or her name. This 1s the point where we begin our benchmarking
(i.e. we benchmark a standard invocation/response cycle between two object managers). OMI
forms an invocation message to be sent to OM2 (i.e. message formation, canonical translation,
other bookkeeping) and ships the message off to Cronus kernel #1 (denoted K1). Next Kl
does message routing and object location (in our case the kernel does not have to do a kernel
locate as we force the address to be in its internal object cache). K1 then sends the invocation
message to the Cronus kernel on the appropriate host (in our case kernel #2 {denoted K2}).
K2 then processes the message to determine where to send the invocation (i.e. to what Cronus
entity running on the host). The invocation message is then sent to object manager #2 where
the message is translated into the local machines internal data representation. A task is then
created internal to OM2 to service the request (perform the requested operation). After OM2
has completed the task it then forms the response message (message formation, canonical
translation, etc.) and sends it to the invoking manager (OM1). The response message is
processed by kernel #2 and then kernel #1 in very much the same way as the original
invocation message. Finally kernel #1 (K1) passes the response message to the appropriate
Cronus entity on its host (in our case OM1). Object manager #1 then extracts the information
requested from the message structure and translates the information from its canonical forms
to the local machine’s internal data representation. It is at this point that the benchmarking of
the invocation and response cycle is concluded.

The data structure (object definition) read from the object database at the remote site is as
follows:

InName: ASC; (15 octets)
InAddress: ASC; (21 octets)
InPhone: ASC; (8 octets)
InAge: Ul6l; (2 octets)

InWeight: U32L;, (4 octets)

where ASC refers to the Cronus canonical representation used for character strings, Ul6l
refers to the canonical representation of an unsigned 16 bit integer, and U32[refers to an
unsigned 32 bit integer. In our set of benchmarks the total size of the object, from the user’s
perspective, is 50 octets.

Bench01 Bench10-17

I Cronus Kemel
Bench02-06 K1 Bench23-25 Bench18-22 K2 Benchd7-09

Crorus Kemel

Figure 3.4.1

~A1-

3.4.1 Results from Benchmarking Interprocess Communication: The results obtained in
this section are included in Figure 3.4.2. The data is arranged by benchmark number, the
Cronus entity in which the benchmark data is obtained, % time spent in the entity, and % of
the overall invocation/response time. [t should be noted that all percentages based on overall
invocation/response time are taken without considering the overhead imposed for message
transportation between kernels and berween object managers and kernels. A discussion of the
effect of transport mechanisms and their overhead will be treated as a seperate issue. A
discussion of the individual benchmarks follows:

1.) BenchOl: This benchmark measures the percentage of time spent in forming and
processing the invocation message up to the point where object manager #1 (OM1) is
about to send the message to the local Cronus kernel (K1).

The manager allocates a message structure, canonically translates the name of the
employee, inserts that information into the message structure, and inserts other
necessary information into the request message structure (i.e. message type, request
identitiers, operation id of operation to be invoked, operation name of operation to be
invoked). The manager then calls a routine called Invoke which in turn calls other
routines to form and maintain structures used to describe the message to be sent to
manager #2 (invocation) (destination host, source host, requesi type, message type,
unique identifier (UID) of the object to be manipulated, message ids, protocols, etc.) It
should be noted that this information is canonically translated before being stored in
the message structure. This information as well as the data to be provided to the
remote manager (name of employee) are sent to the kernel #1 to be routed. The
manager then issues a Unix system call (sendto) to send the invocation message to the
kernel (via UDP). The measurement stops immediately before the call to Unix.

2.y Bench02: This benchmark measures the percentage of time that is spent in kernel
#1 to detect an event and determine what type of event has caused it to awaken.
Additional processing done before the message is pulled in from the Unix socket
buffers.

We begin benchmarking from the point where the kernel has awakened due to some
event. In our case this event corresponds to detected file activity in Unix (a message
has been sent to a socket managed by the kernel that has a socket (file) descriptor
associated with it). The Cronus kernel recognizes three types of events: a message
event which represents a message being sent from one process within the kemel to
another (e.g. operation switch to object locator), a timeout event which signals the
passage of some quanta of time, and a file activity event which represents the detection
of file activity (file activity associated with some socket or message port) which
indicates that an IPC message has been received from outside ihe kernel. Items to be
processed in the Cronus event queues first start out on a waiting list. The items are
essentially waiting to be awakened by some event. The item rnaintains information on
the type of event for which it is waiting as well as other information to distinguish this
item from others on the wait queue that are waiting for the same trype of event. For
example the Cronus kernel must discern between a request for a co-.nection (kernel to
kernel connection), a low effort message, and a process request al. «f which are file

Interprocess Communications Data
Bench.aark Eniily % Entiy | % Gverall
BenchO1 OM1 (1) 100.0 83
Bench02 Kl (@) 14.8 10
Bench03 K1) 13.6 0.9
BenchO4 Kl (D 17.2 12
Bench05 K1 (D 51.7 36
Bench06 K1 (D) 2.8 0.2
Bench07 KM 20.1 09
BenchO8 K2 223 1.0
Bench(09 K2 (M 57.6 26
Benchl0 oM2 (1) 54 23
Benchll oMM 0.3 0.1
Benchl2 oM2 () 17.8 7.6
Benchl3 | OM2 () 166 71
Benchl4 OoM2 (D 125 54
Benchl$ oM2 (M 10.6 4.5
Benchl6 oM2 (1) 21.7 93
Benchl7 oM2 () 152 6.5
Benchl8 K2 R) 13.8 09
Benchl9 K2 R) 139 1.0
Bench20 K2 R) 173 12
Bench21 K2 R) 52.1 36
Bench22 K2 R) 28 02
Bench23 K1 (R) 21.1 09
Bench24 K1 (R) 248 1.0
Bench2$ K1 R) 54.1 22
Bench26 OM1 (R) 9.3 25
Bench27 OM1 (R) 0.5 0.1
Bench28 OM1 (R) 31.1 82
Bench29 OM1 (R) 21.1 72
Bench30 | OM1 (R) 320 8.5

Figure 342 Data: Interprocess Communication Section

activity events. In our case the invocation message rcceived by kernel #1 s
interpreted as a process request. Next the kernel reads the local request in from the
Unix socket buffers. The measurement for this benchmark stops immediately before
the call to Unix to ship the message in from the Unix message buffers (Unix
recvirom).

3.) Bench03: 't'his benchmark measures the percentage of time spent internal to the
kernel in categorizing the incoming message and obtaining information about the
invoking process.

After storing the invocation message internally (shipped in from Unix socket buffers)
kernel #1 first searches through its internal list of known remote processes to
determine what process has tried to communicate with it and to fill in a process
structure with the vital information it needs to know about the process. The kernel then
allocates a new message buffer and associates it with the process file from which the
last message (invocation message) was received (preparing for subsequent activity on
this port). Finally a pointer to the message and the process structure (invoking process)
are passed to the main routine used by the operation switch.

4.) Bench04: This benchmark measures the percentage of time spent in determining
and setting more information internally about the invoking process (OM1), determining
what process the invocation message is bound for, and setting the message up to
facilitate the operation switch’s routing of the message.

The operation switch portion of the kernel begins to handle the request by canonically
translating and copying additional information into the structure describing the
invoking process (see Bench(03) in addition to checking and, if necessary, setting
timeout information associated with the message. Next the operation switch tries to
determine where the message should go by searching the kemel’s internal object
cache. If the object address information is not in the cache then the operation switch
sends a message to the locator within the kernel. The locator then broadcasts a
message to all known kernels to determine the address of the object in question. In our
experiments the address of the object is forced to be in the cache so the locator
mechanism is not invoked. Next the kernel looks up the host structure describing the
destination host and its activity with the operation switch (given the address of the
host). Finally the operation switch copies the message into the approriate buffer
associated (internal to the kernel) with a file descriptor. The file descriptor is then
marked as though a write had been done to the socket (port) associated with it. This is
done so that when the kernel returns to the kernel’s main processing loop acuvity on
the socket will be detected and control will be passed to the operation switch which
will service (route) the message. The measurement for this benchmark ends
immediately after returning to the kernel’s main processing loop.

S.) Bench05: This benchmark measures the percentage of time spent by kernel #1 in

detecting the signal generated internally by the operation switch to bring the external
request to the attention of the kernel for further processing.

_44-

The kernel, now in its main processing loop, waits for any signal that will be trapped
as a specific type of event and associated with an item on a queue of items waiting for
such an event. At this point in our experiment the only event that has signaled file
activity is the one caused internally by the kernel’s operation switch (see discussion of
Bench04). After the file activity has been detected and associated with a wakeup
request nem that 1s on the queue of items awaiting events, the kernel shifts the request
to the ready queue of requests to be processed by the kernel. The kemel now returns
to its main processing loop, pops the new request from its ready queue and invokes the
proper kernel process to service the request (in our case the operation switch). The
measurement for this benchmark ends immediately after the operation switch has been
invoked to service the request.

6.) Bench06: This benchmark measures the percentage of time spent by the operation
switch in message processing immediately before sending the message out using the
local operating system (Unix system call). The operation switch has now been tasked
to handle the rest of the processing to be done by the kernel in order to send the
invocation on its way to the kernel running on the remote host (the host running
OM2). The operation switch first calls a routine that will search through a list of
structures that describe the hosts that are associated with a specific active file
descriptor (host connected to a socket that is associated with the file descriptor). The
operation switch then ships the message to kernel #2 by invoking the Unix system call
write on the appropriate file descriptor. The measurement for this benchmark ends
immediately before the call to the constituent operating system (write).

7.) Bench07: This benchmark measures the percentage of time spent by kernel #2 in
detecting the signal generated by the incoming invocation message and the subsequent
processing done by the kernel before invoking the operztion switch. The percentage of
time spent by the operation switch in processing that occurs immediately before the
message is transferred from Unix message buffers to the kernel internal buffers is also
measured.

The description of what is happening in kernel #2 is essentially the same as the
detailed description of what occured in kernel #1 for benchmark #2 (see discussion for
Bench02). The obvious difference is that the signal detected is being caused by the
incoming message from kernel #1. The operation switch within kernel #2 parses
certain fields within the request event to determine that the activity at the port was
caused by a reliable message. Next the structure describing the host that has caused
activity at the port is found. The operation switch then checks to see if its kernel (K2)
has a message to send. Since 1t does not, the operation switch determines that a
message must be received from the Unix internal socket (port) buffers (this is the
incoming invocation message). The message is then transferred into the kernel's
internal buffers by invoking a constituent operating system call (Unix read). The
measurement for this benchmark ends immediately before the Unix system call (read).

8.) Bench0)8: This benchimark measures the percentage of time spent by the operation

switch in initially processing the incoming invocation message and in updating
statistics pertaining to each host that communicates with the kernel.

After the message is copied into the kernel’s (operation switch) internal message
structures, initial message validity checks are made and information (such as source
host address, destination host address, request type, etc.) is canonically translated and
stored In thc message butter. Finally the host intormation pertaining to the invoking
host (host structure mentioned in discussion of Bench(7) such as count of messages
received from the host, when the last message was received from the host, etc. It is at
this point that a new message buffer is allocated for the next message that is received
from the host. The kernel then returns to the main operation switch routine so that the
message can be. further processed and rotited. It is at this point that the measurement
for this benchmark ends.

9.) Bench09: This benchmark measures the percentage of time spent in the actual
routing of the invocation message to the object manager that will ultimately be tasked
to service the request.

The operation switch now rouics the invocation to the appropriate local process (OM2)
by first searching through its hash tables (search done based on the unique identifier
for OM2) to obtain the structure that describes the process. With this information the
operation switch sends the invocation message (via UDP) to the appropriate locai
process (OM2) by invoking a constituent operating system call (Unix sendto). The
measurement for this benchmark ends immediately before the system call.

Before continuing a little more needs to said about the fundamental structure and
operation of the Cronus object manager. The object manager uses a lightweight tasking
package to schedule and perform all of its work. There are two permanent tasks that
are used most frequently called idle and dispatch (there are others but we will not
concern ourselves with them for now). The idle task essentially waits for activity (IPC,
timeout) and, in our case, after processing the incoming message, the idle task places
itself at the end of a list of runnable tasks and does a lightweight contextual swap to
allow the next task on the queue to run (in our case this Is the dispatch task). The
dispatch task processes new requests made to the object manager (operation
invocations) or responses (replies) to outstanding requests made by the OM. If there
has been a new request, dispatch creates a new task called invokerequest which
determines on which object the operation is invoked. Next it does an access check,
calls the appropriate operation handler routine (to perform the actual operation), and
sends the reply back to the invoker.

10.) BenchlG. This benchmark measures the percentage of the time spent by object
manager #2 in transferring the message internally, decoding the message, and
scheduling the next task to be run. This 1s essentially the time spent (initially) in the
idle task (ref. discussion above).

The object manager (OM2) is normally waiting (within the idle task for some event to

62

wake it up. In this case the object manager is awakened by the invocation message
sent to 1ts port by the kernel (K2). A message in progress structure is found (created
before the event occured) that is used to keep track of vital information associated with
the incoming message (hash table search). The manager then checks the status of the
message in progress. Since the message is waiting for receive the manager transfers
the message from the constituent operating system butfers to the object manager’s
internal message buffer (Unix recvfrom). The object manager now begins to decode
incoming message by translating header information into local structures (i.e. source
address, destination address, priority information, etc.). The rest of the data is then
copied Into internal structures without translation. The status of the message in
progress is now marked as done not reported and the manager returns to the idle task’s
main routine. The manager then searches through the list of blocked tasks (those tasks
that are waiting for external activity) for the task that is waiting for an external
invocation. The task is found and placed at the head of the queue of runnable tasks.
Finally the idle task places itself at the end of the runnable tasks queue and a
lightweight contextual swap is performed to run the next task at the head of the queue.
The measurement for this benchmark ends immediately before the contextual swap.

11.) Benchll: This benchmark measures the percentage of time spent by the object
manager performing the light weight contextual swap. It should be noted that there are
severai conteviual swaps that occur in the manager but their effects are included within
other benchmarks.

12.) Benchl2: This benchmark measures the percentage of time spent in the dispatch
task within object manager #2 (ref. discussion above).

After the contextual swap (within the manager) the manager is within the dispatch
task. The dispatch task now extracts vital information from the incoming message and
translates it from its canonical to its internal representation (message type, request
identifiers, operation code, etc.). The dispatch task then declares (creates) another task
called invokerequest (mentioned above) and places the task at the tail of the queue of
runnable tasks. Finally the task ships the invocation message information into its
internal buffers, adds itself to the list of blocked tasks, and does a lightweight
contextual swap to schedule the next task on the queue of runnable tasks. The
measurement for this benchmark ends immediately after the contextual swap.

13.) Benchl3: This benchmark measurzs the percentage of time spent back in the idle
task determining whether or not there has been additional activity (events) since the
invocation message had been received.

After the contextual swap the manager is back in the main routine within the idle task.
The idle task essentially determines whether a task has exprired (timeout) and then
goes on to try to receive a message that may have been sent to object manager #2
since the invocation message had been processed. [n our case there is no message to
be processed at this point so the idle task places itself at the end of the queue of
runnable tasks and does a lightweight contextual swap to allow the next runnable task
to execute within the manager’s address space. The measurement for this benchmark

-17.

ends immediately atter the contextual swap.

14.) Benchl4: This benchmark measures the percenteve of time spent by the
invokerequest task in verification of the validity of the request and in the formation of
4 response message.

The object manager has now scheduled the invokerequest task (created by the dispaich
task). The invokerequest task first detenmines whether or not the object 1s managed by
manager #2. Next the task reads in the invocation message data and determines
whether or not the operation is a vahd one and if the invoker has the right to request
that the operation be performed. The task then creates a reply buffer and initializes
certain reply codes. The measurement for this benchmark ends immediately after the
reply buffer is allocated and initialized.

15.) Benchl5: This benchmark measures the percentage of time spent by the
invokerequest task in parsing (and translating) the parameters passed for the invoked
operation.

The invokerequest task now calls a function that begins to parse the requested
operation data. This function is unique to the operation requested (ie. there 1s a
separate parsing function for each operation implemented by the manager). The parsing
function essentially searches the request buffer for required (and optional) operation
parameters. The parameters are translated from their canonical representation to the
machine’s internal representation. A reply bufter for the operation (Read) is also
initialized in the parse routine. The function that actually implements the operation
requested is called from the parse .outine next. The measurement for this benchmark
ends immediately before this procedure call.

16.) Benchl6: This benchmark measures the percentage of time spent by the
invokerequest task in the actual implementation of the operation (i.e. reading the
employee record in from the object manager’s database).

We now begin to benchimark the invoked operation itself (Read). This procedure first
searches through the object database to find the requested object instance (in our case
the employee record that matches the supplied employee name). This s accomplished
by searching through the manager’s table of object unique identifiers (UID) based on a
supplied identifier. Once a UID of an object of that type is found a copy of its object
descriptor is brought in from the disk (object itself brought in a5 well) and certain
fields are put into an internal format (the descriptor is internalized). The actual object
data is then translated from the canonical format into the internal data representation
that is anpropriate for the machine. The measurement for this benchmark ends at this
point.

17.) Benchl7.: This benchmark measures the percentage of time spent by manager #2
(invokerequest task) in forming the reply message to be sent 0 e invoking entity

(manager #1).

The manager now allecates space for the reply message (if necessary), canonically
translates the object data fields (employee record), and stores the information in the
reply bufter. Finally the invokerequest task does some cleaning up and bookkeeping
(deallocation of space) and sends the reply message out to the kernel (K2) via UDP.
The measurement for this benchinark ends at immediately before the message is sent
to the kernel for routing.

18.) Benchl8 - Bench2S: Each of these benchmarks measure the percentage of time
spent within kernel #2 and kernel #1 in routing the reply message to the invoking
manager (M1). The acuvity benchmarked in Benchl8 - Bench23 is analogous to the
processing done in Bench02 - BenchQ9 respectively. The obvious differences are that
the message is being routed through kernel #2 and then through kernel #1 and the
message 1s a response message rather than an invocation message.

Before continuing a short description of the state of the invoking manager at this point
in the invocation/response cycle 1s 1n order. After sending out the invocation message,
manager #1 immediately executed a receive reply Cronus system call (recall that this is
being done within the manager’s invokerequest task). Since the manager must wait for
the reply, the receive reply executes a call to TaskSleep which places the current task
(invokerequest) on the queue of blocked tasks. When the manager then subsequently
receives the reply message the task that requires the reply information is blocked and
the permanent manager tasks, idle and dispatch, are in the queue of runnable tasks.

19.) Bench26: This benchmark measures the percentage of time spent by object
manager #1 immediately after being signaled by the constituent operating system that
an event has occured (kernel #1 has sent the manager the response message). The
manager transfers the message into its internal buffers, partially decodes the message
and schedules the next task to be run (dispatch). The work done within the manager is
analogous to the work done initially in object manager #2 during the invocation (ref.
discussion in Bench10).

20.) Bench27: This benchmark measures the percentage of time spent by the object
manager performing the light weight contextual swap. It should be noted that there are
several contextual swaps that occur in the manager but their effects are included within
other benchmarks.

21.) Bench28: This benchmark measures the percentage of time spent in the dispatch
task within object manager #1.

After the light weight contextual swap the manager is within the dispatch task. The
dispatch task then extracts information from the incoming message and translates it
from its canonical to its internal representation (message type. request identifiers,
operation code, etc.). Next the dispatch task determines that the message is a reply and
searches through the items (workers in progress) to determine which blocked task the
reply is bound for. The dispatch task then unblocks the appropriate blocked

_10-

invokerequest task by removing it from the blocked tasks list and places 1t on the end
of the runnable tasks list. Finally dispatch adds itself to the list of blocked tasks and
does a lightweight contextual swap to schedule the next task on the queue of runnable
tasks. The measurement for this benchmark ends immediately after the contextual
swip.

22.) Bench29: This benchmark measures the percentage of time spent back in the idle
task determining whether or not there has been additional activity (events) since the
response message had been received. The work done by the idle task is analogous to
the work done by manager #2 while processing the invocation message (ref. Beuch13
discussion).

23.) Bench30: This benchmark measures the percentage of time spent by the
invokerequest task processing the reply message and presenting the requested
information in the proper format.

The invokerequest task is now scheduled by the muanager. The sk next wansters the
reply and associated information from the worker in progress structures into local
structures. The waorker in progress structures are used to Keep track of those tasks tha
are awaiting a reply message within the manager’s queues. After the worker in
progress entry s freed, the invokerequest 1isk transhutes the reply code sent in the
reply message. I the reply code does not signify a successtul completion then the
crror fields within the reply message are presented. Finally the reply infermation
requested by the invoking manager s translated from its canonical representation to s
internal representation (1. address. telephone number, age, and weighy. The
measurement for this benchmark ends at this point.

Notice that the overall time spent during the invocation and response cycle was 36.52
milliseconds. This includes the UDP message transmission times (intrahost
communication) and the TCP transmission times (interhost communication). The
overall time spent within Cronus (i.e. invocation and response without transmission
time) was found to be 26.79 milliseconds.

4.0 Overall Remarks and Conclusions: The evaluation was an attempt to characterize and
analyze the performance of a distributed operating system called Cronus. Our attention
focused on three main areas, namely, computational throughput (concuirent processing
capability), survivability and availabilty, and nnally interprocess communication.

In measuring the concurrent processing capability of Cronus (ref. section 3.2 --
Benchmarking Computational Throughput) a number of interesting resuits were obtained.
First, it was noted that the throughput, in terms of aggregate Dhrystones/sec., increases as the
workload placed on the servers increases. That is to say that as we increase the number of
Dhrystones that are to be computed by each server, the overall computational throughput
increases dramatically. This is to be expected as, with the increase in load, a greater
percentage of the overall time spent in the environment is used to calculate Dhrystones as
opposed to communication between client and servers, canonical translations, etc. It appears
as though the environment is beginning to behave more like a multiprocessor system than a
distributed system. Next we notice from the data that, as we add more hosts to the task, there
is always a payoff in terms of computational throughput. Communication overhead does
increase, however, as we increase the number of hosts used. There exists a tradeotf between
the amount of computation performed per server (Dhrystones/call), the number of servers
running per host, and the number of hosts integrated into the system. Finally we noticed that
adding more servers (object managers) running per host causes an initial increase in
computational throughput up to some maximum level. As we continue to increase this number
performance begins to drop off. The range over which performance remains at a maximum
level depends on the number of hosts integrated and the load placed on each of the servers
(Dhrystones/call). This drop ir performance may be attributed to an increasing cost of
interaction in the distributed environment (i.e. message formation, canonical translations, etc.).
Another possibility is that, with an increase in servers running per host, we may be witnessing
the effects of increased constituent operating system overhead in terms of process scheduling,
paging, etc. The trends described above manifested themselves in the data collected for the
Sun RPC implementation of the benchmark applic.tion as well. It should also be noted that
the results obtained for the Cronus implementation were, in general, comparable to those
obtained for the Sun RPC implementation

In benchmarking the replication mechanisms within Cronus (ref. section 3.3 --
Benchmarking Availability and Survivability) read and write access latency times were
obtained for an object while varying the read and write quorums needed to access the data,
and the mechanisms used to maintain consistency among replicated objects (update by
replacement, and update by operation). While the data obtained allows us to make few global
assessments of the performance of the Cronus replication mechanisms, it does allow an
application designer familiar with his application and hardware/software environment to
estimate the effect/impact using replication may have on the performance of his application. It
is interesting to note, however, that there does not seem to be a difference in the data
collected for using the two update mechanisms provided in Cronus. namely, update by
operation and update by replacement. This can be attributed to the way in which the protocol
is implemented in both cases. In Cronus, the coordinator in the aforementioned two phase
update protocols does not wait for a signal from the participants listed in the version vector
(other managers of replicated objects of this type) after it sends out commit messages (this
occurs after a quorum has been achicved). As a consequence, we do not have the opportunity

S

to measure the amount of time it actually takes the participants to bring their copies to a
consistent state. This would lead us to expect that, under most circumstances, the latency data
collected would be the same (ref. section 3.3.5). If we made the object size considered very
large, however, we would expect that some differences in the data would begin to appear.
This would be caused solely by the increase in latency involved in shipping a copy of the
object instance to the participant’s nodes. It should be noted that, by using this
implementation, replication mechanisms in Cronus do not guarantee that consistency is
achieved among the replicated copies upon returning to the application (in other words, the
commits may be sent out and one or more of the participants may fail). This should not be a
problem as inconsistencies would be detected upon accessing the replicated object again
(detection is done by comparing version vectors).

In benchmarking Cronus Interprocess Communication (ref. section 3.4) we studied the
individual components that are involved in a typical operation invocation in Cronus. This
analysis provided data on the percentage of time spent within a distinguishable section of code
(based on function) within a Cronus subsystem within the invocation/response cvele as well as
the percentage of the overall invocation/response time that was spent within the code section.
A detailed analysis of the code executed during this cycle was completed as well (ref. section
3.4.1). It can be seen from the data collected (ref. Figure 3.4.2) that the greatest percentages
of overall time spent (invocation and response) were within one of the two Cronus managers
involved. In particular, the two Cronus kernels consumed 115 and 11.4% of the overall time
while the two Cronus managers (invoker and invokee) consumed 34.8% and 42.8%. We have
concluded that most of the time spent within the manager’s was in actually running the
operations requested. This statement however does not yield useful information about the
internal functions associated with a Cronus manager (i.c. lightweight task creation and
scheduling, data translations to and from the canonical data types, etc.). In other words we
could easily make make the operation invoked do very little and, as a consequence, the
percentage of time spent in actually executing the operation would decrease. Most of the
overhead spent within the manager was in message formation and extraction. Most of this
time was spent in translating data to and from Cronus’ canonical data representations. Also a
great percentage of time was spent in lightweight task creation and management.

It 1s our overall opinion that Cronus performed quite well in all areas while providing a great
number of features that are desirable in a distributed environment. In general we found that
benchmarking or studying the behavior of a distributed environment 1s an exceedingly difficult
and time consuming venture. It is not sufficient to run a series of canned routines and, based
on performance indices, assess the overall capabilites of the system. The software and
hardware components that comprise the essence of the distributed environment can be placed
in many configurations (each of which can alter the results of any predefined or static
benchmark). We tried to keep this in mind during cach phase of the evaluation. In shon, the
rules of common sense apply. No benchmark may be taken in isolation to determine overall
system performance in a centralized or a distributed environment.

References:

[1] G. Popek, and B. Walker, The LOCUS Distributed System Architecture, Cambridge,
Mass., MIT Press, 1985.

[2] M.A. Dean, RM. Sands, and R.E. Schantz, "Canonical Data Representation in the
Cronus Distributed Operating System”, Proceedings of the IEEE Infocom ’87, March
1987, pp. 814-819

3] R. Gurwitz, M.A. Dean, and R.E. Schantz, "Programming Support in the Cronus
Distributed Operating System”, Proceedings of the 6th International Conference on
Distributed Computing Systems, May 1986, pp. 486-493

[4] D.R. Cheriton, W. Zwaenepoel, "The Distributed V Kemel and its Performance for
Diskless Workstations", Report No. STAN-CS-83-973, Stanford University, CA., July
1983.

[5] M. Acceta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M.
Young, "MACH: A New Kemel Foundation for UNIX Development” in Proceedings of
USENIX 1986 Summer Conference, pp. 93-112. :

[6] R.F. Rashid, "Threads of a New System", UNIX Review, Aug 1986, pp. 37-49.

[7] P.A. Bernstein, J.B. Rothnie, N. Goodman, and C.A. Papadimitriou, "The
Concurrency Control Mechanism of SDD-1: A System for Distributed Databases (The
Fully Redundant Case)", IEEE Trans. on Software Engineering, Vol. SE-4, No. 4, May
1978, pp. 113-127.

{8] B.C. Lindsay, L..M. Hass, C. Mohan, F.F. Wilms, and B.A. Yost, "Computation and
Communication in R*: A Distributed Database Manager”, ACM Trans. on Computer
Systems, Vol. 2, No. 1, Feb. 1984, pp. 24-38.

[9] M. Stonebraker, "Concurrency Control and Consistency of Multiple Copies of Data in
Distributed INGRES", IEEE Trans. on Software Engineering, Vol. SE-5, No. 3, May
1979, pp. 188-194

[10] "Networking on the Sun Workstation: Network File System Protocol Specification”,
Part No: 800-1342-03, Revision B of 17 February 1986, SUN Microsystems Inc. CA.

[11] A. Ghafoor, C.Y.R. Chen, and P.B. Berra, "A Distributed Multimedia Database
Architecture”, Proc. of IEEE Int. Workshop on Distributed Computing Systems in 90’s,
Hong Kong, Sep. 1988, pp.461-469

[12} K. Ramamritham, D. Stemple, and S. Vinter, "Decentralized Access Control ir a

Distributed Systems”, Proc. of IEEE Fifth Int. Conf. on Distributed Computing Systems,
Denver, Colorado, May 1985, pp. 524-531.

.53

[13} K.-Y., Whang, and S. Brady, "High Performance Expert Systems - DBMS Intertace
for Network Management and Control”, IEEE Journ. on Selected Areas in
Communications, Vol. 7, No. 3, Apnl 1989, pp. 408-417.

[14] C. Semada, H. Coelho, and G. Gaspar, "Communicating Knowledge Systems: Part |
and Part II- Big Talk among Small Systems”, Applied Artificial Intelligence, Vol 1, 1987,
pp. 233-260

[15] V.R. Lesser, and L.D. Emman, "Distributed Interpretation: A Model and
Experiment”, [EEE Trans. on Comp. Vol. C-29, No. 12, December 1980, pp. §1-99.

[16] "Internet Transport Protocols”, Report XSIS 028112, Xerox Corp., Palo Alto, CA.
1981.

(17} "Networking on the Sun Workstation: Remote Procedure Call Programming Guide
and Remote Procedure Call Protocol Specification”, Part No: 800-1342-03, Revicion B of
17 February 1986, SUN Microsystems Inc., CA.

{18] R.P. Weicker, "Dhrystone: A Synthetic Systems Programming Benchmark”,
Communications of the ACM, Vol 27, Number 10, Oct 1984, pp. 1013-1030.

[19] D. Wilson, "Tested Mettle: The Soulbourne 4/601 Workstation”, UNIX Review, Vol
7, Number 6, Jun 1989, pp. 105-117

{20] A.D. Birell, and B.J. Nelson, "Implementing Remote Procedure Calls", ACM
Transactions on Computer Systems, Vol. 2, No. 1, Feb. 1984, pp. 39-59.

[21] R. Schantz, R. Thomas, and G. Bono, "The Architecture of the Cronus Distributed
Operating System", Proc. IEEE 6th Int. Conf. on Distributed Computing Systems,
Cambridge, Mass., May 1986.

[22] A.S. Tanenbaum, Computer Networks, Prentice-Hall, Inc. Englewood Cliffs, NJ,
1981.

[23] Northcutt, J.D., Mechanisms for Reliable Distributed Real-Time Operating Systems -
The Alpha Kernel, Academic Press, Inc., 1987.

Appendix A:

Example type definition file:

type NBITest = 311 globally unique type number
abbrev is nbi
subtype of Object; type hierarchy description

cantype ITEM

representation is Item: persistent state (object)

record defined but not manipulated
COne: U32L;

end ITEM;

the next few lines are definitions for the Dhrystone
calculation operation (INVO).

generic operation INVOQ

(Iterations: U32; input parameters. number of

Tid: UIl6I;) Dhrystones calculated (Iterations)
returns and invocation tag (Tid)

(ResultONE: U321, result Flag returned (ResultONE)
Tidres: U16I); and invocation tag returned (Tid)

end type NBITest;
Note: U32I and U16I refer to canonical data representations used within

Cronus for the variables in question (unsigned 32-bit integer and unsigned
16-bit integer respectively).

Example manager definition file:

manager "Non-Blocking Invoke Manager"
abbrev is nbi

type nbi
variable representation is ITEM persistent state (object)
nbi implements all from nbi identification of inherited
obj implements rest operations (from parents in Iype

hierarchy).

-55.

Appendix B:
{ Specification of Client and Server processes for Cronus}

The formal specification of the client and the sciver processes are given as
follows. It can be noted that the client application process essentially

uses two communication functions of the Cronus IPC layer which are Invoke
and Receive as mentioned previously. Similarly the server process relies on
the underlying IPC layer and uses Send and Receive primitives.

x Specification of the Client Application Process *

procedure ClientApplication(NumOfServers, NumOfNodes, NumOfBenchmarks)
NumOfServers, NumOfNodes, NumOfBenchmarks : integer;
NodeNumber, ServerNumber : integer; Success : boolean;
begin

/*** First take a time hack locally ***/
StartTime = TimeHack();
/*¥** Next send out all invocations ***/

for ServerNumber = 1 to NumOfServers loop
for NodeNumber = 1 to NumOfNodes loop
InvokeServer(NodeNumber, ServerNumber, NumOfBenchmarks);
NodeNumber = NodeNumber + 1;
end loop;
ServerNumber = ServerNumber + 1;
end loop;

/¥** Next receive all responses ***/
for ServerNumber = 1 to NumOfServers loop
for NodeNumber = 1 to NumOfNodes loop
Success = ReceiveResponse(NodeNumber, ServerNumber);
NodeNumber = NodeNumber + 1;
end loop;
ServerNumber = ServerNumber + 1;
end loop;

/*¥** Take another time hack **%/
FinishTime = TimeHack();

/*** Finally calculate the aggregate rate of calculating benchmarks ***/

BenchMarksPerSecond = (NumOfNodes*NumOfServers*NumOfBenchmarks)/
(FinishTime-StartTime)

-56-

end ClientApplication;

function InvokeServer(NodeNumber, ServerNumber, NumOfBenchmarks)
NodeNumber, ServerNumber, NumOfBenchmarks : integer;

begin
/* This function forms the invocation message (including any %/
/* canonical translation if necessary) and sends the message out */
/* to the appropriate server process. This function is very much */
/* dependent on the distributed environment used (i.e. most */
/* all of its implementation may be shielded from the user). */

end InvokeServer;

function ReceiveResponse(NodeNumber, ServerNumber) return Success
NodeNumber, ServerNumber : integer; Success : boolean;

begin
/* This function receives (and, if necessary, canonically */
/* translates) the results sent back from the server processes. */
/* Once again, how this is done and how much of the implementation */
/* is left to the user is dependent on the distributed environment */
/* used. */

end ReceiveResponse;

*kx Specification of the Server Process ***

procedure ServerProcess()
NumOfBenchmarks, BenchMark : integer;
begin
loop FOREVER
NumOfBenchmarks = ReceiveMessage AndExtractArguments();
for Benchmark = 1 to NumOfBenchmarks loop
ExecuteBenchmark();
end loop;
FormAndSendResponse();
end loop;
end ServerProcess;

function ReceiveMessageAndExtractArguments() return NumOfBenchmarks
NumOfBenchmarks : integer;
begin
/* This routine receives the invocation message from the client */

_57-

/* application, extracts the number of benchmarks to be executed */

/* from the message structure, and, if necessary, translates this */

/* information into a representation suitable for interpretation at */

/* the local node. In implementation some or all of this overhead */

/¥ may be handled transparently by the distributed environment. */
end ReceiveMessage AndExtractArguments;

tunction FormAndSendResponse()

begin
/* This routine is called to send the appropriate success message to */
/* the invoking client application. This includes formation, canonical */
/* wanslation (if necessary), and transmission of the message. Some */
/* or most of the above may be handled transparently by the distributed */
/* environment. */

end FormAndSendResponse;

| Specification of Client and Server processes using Sun RPC}

The formal specification of the client and the server processes using Sun
RPC is given as follows.

Pseudocode for Client Application:

procedure RPC_ClientApplication(NumOfServers, NumOfNodes, NumOfDhrystones)
NumOfServers, NumOfNodes, NumOfBenchmarks : integer;
begin
RegisterServerProcedure("ProcessResults");
StartTime = TimeHack();
for ServerNumber = 1 to NumOfServers loop
for NodeNumber = 1 to NumOfNodes loop
CallServer(NodeNumber, ServerNumber, NumOfDhrystones);
NodeNumber = NodeNumber + 1;
end loop;
ServerNumber = ServerNumber + 1;
end loop;
BecomeAServer();
end RPC_ClientApplication;

function RegisterServerProcedure(ProcedureName)
ProcedureName : string;
begin

-H8.

/* After all invocations are made by the client application it will ~ */
/* service invocations made by the server processes. The server */
/* processes must invoke operations on the client to register their ~ */
/* results after doing their benchmark calculations. In other words ~ */
/* the client and server switch roles (the client becomes a server */
/* and visa versa). This function registers the name of the procedure */
/* that will be scheduled by the dispatcher when a server registers */
/* its results with the client (Success Flag). The new service is */

/* registered with the local node’s portmapper daemon and a TCP socket */
/* is allocated for communication with this new service. */
end RegisterServerProcedure;

function CallServer(NodeNumber, ServerNumber, NumberOfDhrystones)

NodeNumber, ServerNumber, NumberOfDhrystones : integer;

begin
/* This function establishes a TCP connection between the client and */
/* server, forms a message structure containing canonically translated */
/* data to be passed to the server (NumberOfDhrystones), and sends the */
/* message over the TCP connection to the server (dispatcher). */

end CallServer;

function BecomeAServer()

hegin
/* This function is called after the client application has made all */
/* necessary invocations and must become a server process in order to */
/* receive the Success flags sent by the server processes after they */
/* complete the required number of Dhrystone calculations. This */
/* function never returns. A dispatcher (infinite loop) waits for ~ */
/* the invocations and schedules the registered procedure "Process */
/* Results" to service the invocation. */

end BecomeAServer;

procedure ProcessResults()

begin
/* First translate data supplied in the invoking message structure into */
/* a format suitable for the local node. *f

Success = ExtractAndTranslateMessageData();

ResultsReceived = ResultsReceived + 1;
if ResultsReceived = NumOfServers then
FinishTime = TimeHack();
DhrystonesPerSecond = (NumberOfNodes*NumberOtServers™
NumberOfDhrystones)/(FinishTime-StartTime):

~-50.

endif
end ProcessResults;

Pseudocode for the Server Process:

procedure ServerProcess()
begin
/* register the procedure that is to be scheduled upon client invocation */
RegisterServerProcedure("ServiceClient");

/* server’s dispatcher takes over (supplied by Sun RPC libraries). The */

/* dispatcher runs continuously (in other words we never return from */
/* BecomeAServer)and services invocations by scheduling ServiceClient */
/* to run in the server’s address space. */
BecomeAServer();

end ServerProcess;

procedure ServiceClient()
begin
/* determine the number of Dhrystones to be calculated (from client’s */
/* invoke message). Number is translated to be compatible with local */
/* node’s internal representation. */
NumOfBenchmarks = ExtractAndTranslateMessageData();
for Benchmark = 1 to NumOfBenchmarks loop
ExecuteBenchmark();
Benchmark = Benchmark + 1,
end loop;
CallClient(Success);
end ServiceClient;

function CallClient(Flag)

Flag : boolean;

begin
/* This call creates a local TCP socket, connects it to the client */
/* application’s socket (client is now really a server), and invokes */
/* an operation on the client application to register the result of */
/* the requested Dhrystone calculations (Flag). */

end CallClient;

~-HA0N-

MISSION
of

Rome Air Development Center

RADC tlans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C*I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C*I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.

